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Most bioinformatics analyses require the assembly of a multiple sequence
alignment. It has long been suspected that structural information can help
to improve the quality of these alignments, yet the effect of combining
sequences and structures has not been evaluated systematically. We
developed 3DCoffee, a novel method for combining protein sequences
and structures in order to generate high-quality multiple sequence align-
ments. 3DCoffee is based on TCoffee version 2.00, and uses a mixture
of pairwise sequence alignments and pairwise structure comparison
methods to generate multiple sequence alignments. We benchmarked
3DCoffee using a subset of HOMSTRAD, the collection of reference struc-
tural alignments. We found that combining TCoffee with the threading
program Fugue makes it possible to improve the accuracy of our
HOMSTRAD dataset by four percentage points when using one structure
only per dataset. Using two structures yields an improvement of ten
percentage points. The measures carried out on HOM39, a HOMSTRAD
subset composed of distantly related sequences, show a linear correlation
between multiple sequence alignment accuracy and the ratio of number
of provided structure to total number of sequences. Our results suggest
that in the case of distantly related sequences, a single structure may not
be enough for computing an accurate multiple sequence alignment.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: multiple alignment; structural superposition; TCoffee;
threading; sap*Corresponding author

Introduction

It has long been assumed that using structural
information can increase the accuracy of multiple
protein sequence alignments (MSA).1 Recent
results2,3 suggest that accurate MSAs obtained this
way are useful for making functional assignments.
These findings are quite exciting in a context
where a structure may soon be available for
each protein family (transmembrane proteins
excepted).4 However, making the best out of this
wealth of data will require the development of
new automatic methods, able to efficiently incor-
porate protein structure information within

MSAs. The incentive for doing so is very strong,
considering the critical role MSAs play in so many
sequence analysis applications,5 like phylogenetic
reconstruction, structure prediction, functional
characterization, database searches and non-
synonymous single nucleotide polymorphism
characterization.6

Despite their usefulness, accurate MSAs remain
difficult to compute, owing to reasons that are
both computational7 and biological.8 From a
computational point of view, the assembly of an
optimal MSA is a complex problem and an exact
solution can be computed only for small sets of
related sequences.9 This is the reason why most
packages use an approximate heuristic, the
progressive alignment algorithm,10 that gives no
guarantee on delivering an optimal solution but
can rapidly align large sets of sequences. On the
biological side, one is limited by the lack of an
objective and accurate criterion to assess MSA
quality.8 As a consequence, most methods use
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sequence similarity (assessed with a substitution
matrix) as a criterion for optimization. However,
similarity is not informative enough to drive the
correct alignment of distantly related sequences, a
situation that typically requires using structure
comparison methods so that a structure-based
MSA (S-MSA) can be derived. S-MSAs constitute
the de facto standard of truth for assessing sequence
alignment accuracy and several established
S-MSAs collections11–13 are used routinely to evalu-
ate MSA packages.14–17 Although one may argue
that these highly accurate MSAs (as judged from
structural analysis) are not always optimal from
an evolutionary point of view, they usually reflect
well the structural and functional relationships
between the considered proteins.

With 3DCoffee, we show that using a small
amount of structural information when assembling
an MSA makes it possible to improve alignment
accuracy and emulate the computation of an
S-MSA. Combining sequences and structures in
this manner requires the integration of three types
of methods: (i) sequence alignment methods;
(ii) methods for comparing two or more structures
and deduce a sequence alignment; (iii) methods
for comparing sequences and structures, often
referred to as threading.

Sequence–sequence comparison methods rely
mostly on the dynamic programming (DP) algo-
rithm to compute an alignment where gaps are
disposed in such a manner that similarity is
maximized between the two sequences.18,19 Given
a substitution matrix and a gap penalty scheme,
DP can be used to compute global or local
alignments20,21 but accurate alignments can be
obtained only with pairs of sequences that are at
least 30% identical.22 Structure–structure compari-
son has been approached using a wide variety of
heuristics,23,24 and to this day more than 30 algor-
ithms have been reported. The simplest, like
LSQman,25 use rigid body superposition and let
the algorithm look for an optimal superposition
where intermolecular distances are minimized
between superposed positions in the two struc-
tures. These methods perform well on similar
structures where the 3D relationships of residues
have been well preserved by evolution. These
structures are usually encoded by closely related
sequences. When dealing with more distantly
related sequences, the residue equivalences can be
worked out iteratively, as done in STAMP,26 where
the equivalences are used to drive a superposition
that is used, in turn, to compute a distance matrix.
The algorithm uses this updated matrix to refine
the set of residue equivalences and make a new
superposition. The process is carried out until it
converges. SAP27 uses a similar principal, although
rather than being iterative, the algorithm computes
the series of rigid superpositions associated with
forcing the superposition of every possible pair of
residues. The final alignment is computed by DP,
using the summed distance matrices of all the
superpositions considered. DALI produces align-

ments of comparable accuracy, computed by con-
sidering the local comparison of the distance maps
associated with the considered structures.28 Most
of these methods make it possible to use structures
for aligning sequences that are less than 30%
identical. Although they diverge slightly in the
alignment they produce, it is hard to establish
which one (if any) performs better than the others.

Sequence–structure comparisons (or threading)
can be achieved using two categories of
methods.29,30 One may use techniques inspired
from molecular replacement to check whether a
sequence is compatible with a 3D fold,31 or sophis-
ticated DP where the algorithm analyses the
3D-structure to determine local gap penalties and
local substitution costs. Fugue is based on this
principle and turns a structure into a position-
specific substitution matrix, so that a sequence–
structure alignment can be delivered using DP.32

Many of the structure-based alignment methods
have been extended to generate S-MSAs. For
instance, the double DP strategy of SAP has been
coupled with a progressive algorithm to align
more than two structures.33 At least two other
pairwise structural alignment methods have been
incorporated in a progressive alignment strategy:
STAMP and COMPARER. COMPARER34 was used
to assemble HOMSTRAD, the collection of mul-
tiple structural alignments used in this work for
validation purposes. Other multiple structural
alignment methods exist that use more specific
procedures. For instance, DALI produces S-MSAs
by aligning several structures to a master structure.
One may use Fugue in a similar fashion by
aligning several sequences to a single structural
template. MNYFIT computes a consensus structure
and uses it as a master to align all the others.35 The
lack of method-independent reference datasets
makes it difficult to benchmark these packages
accurately and establish their respective strength
and weaknesses. Yet they all share a common
drawback: they are all built around a specific pair-
wise alignment algorithm, making it difficult to
combine the respective strengths of several algo-
rithms into a single model. Furthermore, none of
the available methods can seamlessly handle a
mixture of sequences and structures, and when
doing so, the most common strategy is to start
aligning the structures into an S-MSA, before
adding the sequences in a semi-manual fashion.2

We designed 3DCoffee to address this problem.
3DCoffee uses the TCoffee v2.00 MSA package.
TCoffee computes MSAs using pre-compiled
libraries of pairwise alignments. The libraries can
be compiled using any method able to generate
pairwise alignments, like threading and structure
superposition. This makes the library a powerful
means to incorporate structural information into
the MSA assembly process. Using methods like
SAP or Fugue, we studied the effect of compiling
the library with a mixture of sequences and struc-
tures. Our methodology could easily be extended
to incorporate methods that have not yet been
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considered so that biologists can integrate and
combine their techniques of choice.

Principle of the 3DCoffee method

Computation of TCoffee multiple
sequence alignments

We used TCoffee version 2.00 to compute non-
structure-based MSAs (default mode), as well as
S-MSAs. In its default mode, TCoffee does not use
structures, it takes sequences as input and makes
pairwise comparisons to compile a primary library.
This primary library is a list of weighted pairs of
residues.36 A residue pair appears in the library
when it has been observed in one of the pre-
compiled pairwise alignments. The pairwise
alignments compiled in the primary library can be
computed using any method one finds suitable.
By default, TCoffee computes for each pair of
sequence a global pairwise alignment obtained
with the Needlman & Wunsch (NW)18 algorithm
and the ten best-scoring local alignments as given
by the SIM algorithm.37 The weight associated
with every residue pair obtained this way is set to
the average percentage identity within the primary
alignment (local or global). When two alignments
contribute the same pair of aligned residues, the
weights are added.

The weights within the primary library are
then re-estimated according to the library self-
consistency,36 and the re-weighted library (named
an extended library) is used as a position-specific
substitution matrix to carry out a progressive
multiple alignment.38 Doing so involves computing
a distance matrix by comparing every pair of
sequences and using this matrix to compute a
neighbor-joining guide tree.39 The tree topology
determines the order in which the sequences are
incorporated within the MSA, using standard DP
and the extended library as a position-specific
substitution matrix.

Incorporation of structural information within
the TCoffee library

Structural information is incorporated within the
library by the means of structure-based pairwise
sequence alignments. We used three methods,
now fully integrated within TCoffee, providing
the associated package is installed. Fugue is a
threading method that aligns a protein sequence
with a 3D-structure.32 3DCoffee directly submits
sequence/structure pairs to the official Fugue
server† and retrieves the resulting pairwise
alignments that are integrated into the primary
library using the standard TCoffee weighting
scheme. SAP uses double DP to compute a pair-
wise alignment based on a non-rigid structure

superposition.27 When integrating these alignments
within the primary library, we set to 100 the weight
associated with each pair of aligned residues. This
is the maximum weight an individual constraint
can receive in a TCoffee primary library. Although
this value is meant to reflect the high reliability
of SAP, it only makes it more likely for these pairs
to be aligned in the final MSA without explicitly
forcing them to be so. Not forcing every pair of
the structural alignments to find their way into
the final alignment is important, as some portions
of the SAP alignments correspond to non-super-
posable portions of the structures and are therefore
unreliable. These segments usually have a low
consistency within the primary library, and are
therefore down-weighted at the extension stage.
LSQman is a rigid body structure superposition
package that makes structure-based sequence
alignments.40 When turning an LSQman structure
superposition into a sequence alignment, we con-
sidered two residues to be aligned if they were
less than 3 Å apart in the superposition. LSQman
constraint weights are set to 100, like those of SAP
and for similar reasons.

Producing multiple sequence
structure alignments

We adapted TCoffee so that, given a collection of
sequences and structures, one may specify which
structures must be used and which methods
should be applied on each possible pair. For
instance, given a peptide file, 3DCoffee considers
in turn every possible sequence pair within the
dataset. For a given pair, the program computes a
global alignment using NW and a series of local
alignments using Lalign. If both sequences have
an available structure, a pairwise alignment is
computed using SAP and another one using
LSQman. If one sequence only has a known struc-
ture, an alignment is made using the threading
method Fugue. All these alignments are added to
the TCoffee library using the standard procedure
described above.

Benchmarking procedure

We used the February 2002 release of
HOMSTRAD11 (e) to design a benchmark strategy
for 3DCoffee. HOMSTRAD is a hand-curated data-
base of high-quality S-MSAs built around the mul-
tiple structure alignment package COMPARER.
We selected within HOMSTRAD the most
demanding alignments using two criteria: at least
four sequences and less than 25% average identity
within the MSA. This yields a collection of 43
MSAs, four of which had to be discarded (FAD-
Oxidase_C, FAD-Oxidase_NC, TPR and bv)
because they are impossible to align with any of
the available methods and are therefore unin-
formative for the analysis. The 39 remaining
MSAs (245 sequences) constitute our HOM39†http://www.cryst.bioc.cam.ac.uk/~fugue/
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dataset. It has the advantage of being both compact
and discriminative.

We assessed the biological quality of our MSAs
by comparing them with their HOM39 reference
MSA, using the aln_compare package36 that com-
putes the column score (CS), which is a measure
of the fraction of columns aligned identically
between two MSAs.41 We checked whether
sequences without a known structure could benefit
from being aligned with sequences whose struc-
ture is known. We named this measure the induced
improvement, and measured it by removing the
provided structure(s) from the reference and the
target MSAs before comparing them.

System and packages

Academic licences (free of charge) to run TCoffee
2.00, SAP and LSQman were obtained for each
package. These were installed on an SGI 02,
running Irix 6.2. The protocols used here are now
part of the TCoffee documentation.

Results

Improving MSA accuracy with a
single structure

Single structures can be incorporated into an
MSA only by using a threading method like
Fugue. Before doing so, we evaluated the accuracy
of Fugue as a pairwise method on the entire
HOM39 dataset. Figure 1(a) shows a comparison
between Fugue and TCoffee (TCoffee uses SIM
and NW by default) where the relative per-
formances of the two methods are assessed by
comparison with the HOM39 reference. Fugue
clearly outperforms TCoffee when making pair-
wise alignments. For instance, when comparing
Fugue and TCoffee on all pairs of sequences from
HOM39 (Figure 1(a)), we found Fugue to be three
percentage points more accurate than TCoffee
(61.8% accuracy for Fugue against 58.8% for
TCoffee). The difference is significant with a
P-value of 1029 (Wilcoxon signed rank test).

We then computed each HOM39 MSA while
providing TCoffee with one structure via the
-struc_to_use flag. In each test case, we chose the
most distantly related sequence (as judged with
the average percentage identity in the HOM39
reference). The extent of identity between the
selected structures and the rest of their MSA
ranged between 12% and 24%. A new flavor of
TCoffee (TC-Fugue) was designed, that uses three
pairwise alignment methods: SIM, NW, and Fugue
(Table 1A). We also used TCoffee associated with
the Fugue method only (Fugue) as a control. This
last procedure amounts to aligning the sequences
one after the other onto the sequence with known
structure, using the Fugue algorithm. Two other
controls were set up using TCoffee in default
mode and CLUSTALW version 1.83 (CW183).

Figure 1. Performances of pairwise structure-based
sequence alignment methods. Each dot corresponds to a
parwise alignment taken from HOM39 (see method).
The vertical axis represents the difference of alignment
accuracy (Column Score) between TCoffee and (a) Fugue,
(b) SAP and (c) LSQman. The horizontal axis shows the
percent identity between the two sequences being con-
sidered, as measured on the reference HOM39 MSA.
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Our results (Table 1A) show that providing a
structure to TC-Fugue improves MSAs by four
percentage points over TCoffee (or by a litle less
than eight percentage points over CLUSTAL W).
The difference is significant with a P-value of 1023,
and an observed improvement on 23 of the 31
alignments that are not tied between the two
methods. We found (Figure 2(a)) that the amount
of reported improvement depends loosely on the
structure/sequence ratio, with high ratios yielding
greater improvements. The low performances of
the Fugue control are probably explained by the
stringency of the CS measure that requires every
sequence to be aligned correctly and is not well
adapted to the pairwise-based alignment method
used here.

We measured the induced improvement in the
TC-Fugue alignments by removing the provided
structure and found the average TC-Fugue accu-
racy to remain higher than that of TCoffee (Table
1B and Figure 2(b)), although in this case the differ-
ence is not statistically significant, as the observed
difference is associated with a P-value of only
0.4. Note that the values in Table 1B are higher
than the corresponding values in Table 1A because
in Table 1B the evaluation is carried out while
ignoring the provided structure (usually the
hardest sequence to align).

Improving MSA accuracy with two structures

Using two structures offers the possibility of
making structure–structure (SAP, LSQman) as
well as structure–sequence comparisons. Before
using these methods to compute an MSA, we
evaluated their pairwise accuracy (Figure 1(b) and
(c)). As expected, we found SAP and LSQman to
outperform TCoffee significantly. A measure made
on the SAP alignments of every HOM39 pair of
sequence (Figure 1(b)) indicates an average
accuracy of 86.3%. The difference with TCoffee is
highly significant with a P-value of 10211 (Wilcoxon
signed rank test). Under the same conditions,
LSQman outperforms TCoffee by 12 points with

an average accuracy of 70.3%, and a difference
also highly significant.
We computed every HOM39 MSA while pro-

viding TCoffee with two structures: the one used
previously with TC-Fugue and its most distantly
related homologue (lowest percentage identity)
within the considered HOM39 MSA. An attempt
to use the most informative pairs guided this
choice. In order to judge the individual contri-
bution of each of the three structure-based
methods (Fugue, SAP and LSQman) to the overall
accuracy of 3DCoffee, we used them separately,
each time in conjunction with SIM and NW (Table
2A). These three new flavors of TCoffee are
named TC-Fugue, TC-SAP and TC-LSQ, and the
combination of all the available pairwise
methods (Fugue, SAP, LSQman, SIM and NW) con-
stitutes the new 3DCoffee method (TC-3D in the
Tables).
As expected, TC-Fugue, TC-SAP and TC-LSQ

all outperform TCoffee (Table 2A). Furthermore,
TC-3D outperforms every alternative flavor and,
given two structures, it produces MSAs on average
ten percentage points better than TCoffee and 4.5
percentage points better than TC-Fugue (Table
2A). As indicated in Table 2A, all the differences
reported between the new methods and TCoffee
are statistically significant. Here as well, the extent
of the improvement depends on the structure/
sequence ratio (Figure 3(a)). Similar trends were
observed when measuring the induced improve-
ment (Figure 3(b)), which amounts to slightly less
than 3.5 percentage points when comparing
TC-3D with TCoffee (Table 2B). Although limited
in amplitude, this improvement is also statistically
significant.

Improving MSAs accuracy with many structures

We examined the effect of varying the structure/
sequence ratio for every HOM39 MSA. We did so
by applying TC-3D on each HOM39 dataset, using
structural sets that contained between one and N
structures (N being the total number of sequences).

Table 1. Direct (A) and induced (B) improvement when providing one structure of the HOM39 datasets

Method N str. Avg. acc. Difference with TCoffee P-value (Wilcoxon signed-rank test)

A. Direct improvement
TCoffee 0 42.24 – –
CW-183 0 38.43 23.8 2 £ 1022

Fugue 1 31.26 210.9 2 £ 1024

TC-Fugue 1 46.33 1 4.1 1 3 1023

B. Induced improvement
TCoffee 0 52.83 – –
CW-183 0 45.75 27.1 1 £ 1023

Fugue 1 35.53 217.3 3 £ 1024

TC-Fugue 1 54.73 1 1.9 4 3 1021

Method indicates the method being used: TCoffee (TCoffee with NW and SIM), CW-183 (CLUSTAL W, 1.83), TC-Fugue (TCoffee
with NW, SIM and Fugue), Fugue (TCoffee þ Fugue, without NW or SIM). N str. indicates the number of structures provided. Avg.
acc. indicates the average accuracy as measured with the CS score by comparison with the HOM39 reference alignments. P-value
estimates the statistical significance of the observed difference between the considered method and the default TCoffee. The best
performing method is in bold.
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The structural sets were assembled in an incre-
mental manner. Given an MSA, one starts with the
most distantly related structure (as shown above)
before adding the structure of the less similar
remaining sequences one by one, until N structural
sets are defined for each HOM39 MSA. We then
realigned every HOM39 MSA with each of its

associated structural sets and compared the result-
ing alignments with the HOM39 reference. This
makes a total of 200 MSA (between four and 15
for each HOM39 protein family) that were used to
compute the data presented in Figure 4(a) and 161
for Figure 4(b).

The results are presented in the form of a

Figure 2. Comparative perform-
ances of TC-Fugue and TCoffee
when using one structure. (a) Direct
improvement. Each dot corre-
sponds to an MSA taken from
HOM39. The vertical axis indicates
the difference of accuracy between
a TC-Fugue and a TCoffee MSA.
The horizontal axis indicates the
ratio between the number of pro-
vided structures (1 structure) and
the total number of sequences
contained in the MSA. (b) Induced
improvement. Similar to Figure 2(a),
the MSA Accuracy is measured
while ignoring the contribution of
the provided structure.
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boxplot in Figure 4(a) (direct improvement) and
Figure 4(b) (induced improvement). Figure 4(a)
indicates the existence of a reasonable correlation
between the structure/sequence ratio and the
MSA accuracy, although the data are not distri-
buted evenly. One gains roughly ten percentage
points in accuracy with every 20 percentage points
increase of the structure/sequence ratio. An indi-
vidual analysis of each protein family suggests
that this trend is consistent across most of the
HOM39 dataset, although the phenomenon varies
in amplitude. When using 3DCoffee and all the
available structures in a procedure that amounts
to assembling a multiple structural alignment, we
obtained a score of 71.9% accuracy, a value short
of the theoretical maximum of 100 that might have
been expected if the unreliable regions of HOM39
had been removed from the evaluation. This value
is an estimate of the correlation between the
two-structure superposition method SAP and
COMPARER rather than an estimate of accuracy.
The induced improvement follows a similar trend,
albeit more modestly (Figure 4(b)), and yields a
gain of roughly two percentage points for every 20
percentage points of ratio increase. The distri-
bution of this induced improvement is even less
regular than that of the direct improvement. It
indicates that in the HOM39 dataset, sequences
benefit only modestly from the incorporation of
the 3D information associated with one of their
remote homologue.

Conclusion

3DCoffee is a novel method that takes advantage
of structural information for aligning sequences.
We benchmarked 3DCoffee using HOM39, a collec-
tion of high-quality reference S-MSAs. We used

the TCoffee package to mix sequences, structures
and structure/sequence alignment methods, and
found this new protocol to improve MSA accuracy
in a manner that depends on the structure/
sequence ratio within the considered dataset. Our
results suggest that using structures can improve
the alignment accuracy of sequences without a
known structure.
The 3DCoffee protocol bears several advantages.

It is relatively fast: given all the pairwise align-
ments, it takes a few seconds to align ten sequences
200 residues long on a standard workstation. It is
also very flexible and could easily be adapted
to include any structure analysis method able to
deliver a sequence alignment. We show here that
one can effectively use this protocol to combine
the output of methods based on different prin-
ciples, like a rigid structure superposition method
(LSQman) and a non-rigid one (SAP). This makes
3DCoffee a versatile tool that could easily be used
in MSAs computation the way meta-methods are
used in structure prediction.42

Yet, this study lends itself to a more paradoxical
conclusion. Although structural information
clearly helps improve MSA accuracy, it is sur-
prising to find that its usage lacks the dramatic
effect one may have expected. For instance, using
one structure on a dataset of distantly related
sequences increases the average accuracy by only
an average four percentage points (and a maxi-
mum of ten). One may have hoped that the first or
the first two structures would have delivered a
larger share of the potential improvement. Yet this
does not happen and every extra structure has
about the same effect as the others on the overall
accuracy, thus yielding a quasi-linear correlation
between the structure/sequence ratio and the
overall MSA accuracy.
This finding suggests that the standard methods

Table 2. Direct (A) and Induced (B) improvement when providing two structure of the HOM39 datasets

Method N Str. Avg. acc. Difference with TCoffee P-value Wilcoxon signed-rank test

A. Direct improvement
TCoffee 0 42.24 0.0 1.0
CW-183 0 38.43 23.8 2 £ 1022

TC-Fugue 2 46.39 þ4.0 5 £ 1023

TC-SAP 2 50.81 þ8.5 6 £ 1026

TC-LSQ 2 47.26 þ5.0 2 £ 1023

TC-3D 2 52.52 1 10.3 1 3 1025

B. Induced improvement
TCoffee 0 56.12 0.0 1.0
CW-183 0 50.22 25.9 1 £ 1021

TC-Fugue 2 58.07 þ1.9 2 £ 1021

TC-SAP 2 58.49 þ2.4 2 £ 1021

TC-LSQ 2 57.52 þ1.4 4 £ 1021

TC-3D 2 59.55 1 3.4 2 3 1022

Direct improvement is measured on the complete alignment, including the used structures. The induced improvement is measured
only on the sequences whose structures were not used. Method indicates the method being used: TCoffee (TCoffee with SIM and
NW), TCW-183 (CLUSTAL W version 1.83) TC-Fugue (TCoffee þ NW þ SIM þ Fugue), TC-SAP (TCoffee þ SIM þ NW þ SAP),
TC-LSQ (TCoffee þ SIM þ NW þ LSQman), TC-3D (TCoffee þ SIM þ NW þ Fugue þ SAP þ LSQman). N str. indicates the number
of structures provided. Avg. acc. indicates the average accuracy as measured with the CS score by comparison with the HOM39
reference alignments. P-value estimates the statistical significance of the difference between the considered method and TCoffee
default using the Wilcoxon signed-rank test. The best performing method is in bold.
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we used here are not yet able to let the structural
information diffuse optimally onto distantly
related sequences. As a consequence, the best
way to obtain a highly accurate MSA of remote
homologues is to use more than one structure
and, if possible, one structure for each sequence
(or group of closely related sequences). On the

basis of these results one may argue that given
current methods, the “one structure for every pro-
tein family” strategy43 may prove short of solving
all the alignments problems faced by homology
modeling. Achieving this purpose will require
either better sequence comparison methods or
more structures.

Figure 3. Comparative per-
formances of TC-3D and TCoffee
when using two structures.
(a) Direct improvement. Each dot
corresponds to an MSA taken from
HOM39 (see method). The vertical
axis indicates the difference in
accuracy between a TC-3D and a
TCoffee MSA. The horizontal axis
indicates the ratio between the
number of provided structures
(2 structures) and the total number
of sequences contained in the MSA.
(b) Induced improvement. Similar
to (a) with the MSA accuracy
computed on the sequences without
known structure.
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vertical axis shows the average
difference of accuracy and the hori-
zontal axis the average structure/
sequence ratio. The boxplot was
generated with the R package
using standard settings. Each box
stretches from its lower hinge
(defined as the 25th percentile) to
its upper hinge (the 75th percen-
tile). The median is shown as a line
across the box. The top and
the bottom whisker indicate the
smallest data value larger then
lower inner fence. The lower inner
fence (not drawn) is equal to 1.5p

spread to the 25th percentile. Values
below the lower inner fence are
plotted as a dot. The upper whisker
is plotted in a similar fashion
while using the 50th percentile as
reference. (b) Induced improve-
ment. Identical to 3b, with the
measure of accuracy made on the
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only.
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